扫描打开手机站
随时逛,更方便!
当前位置:首页 > 百科 > 知识

求圆的方程的4种方法(圆的标准方程怎么求)

时间:2022-03-11 来源:互联网 作者:紫琼酱

1、求圆的方程的4种方法是x²+y²=1,x²+y²=r²,(x-a)²+(y-b)²=r²,√(x-a)²+(y-b)²=r。解方程组,求出a、b、r的值,并把它们代入所设的方程中去,就得到所求圆的方程。

2、圆的标准方程(x-a)²+(y-b)²=r²中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。

求圆的方程的4种方法

圆的标准方程怎么求

求圆的标准方程:(x-a)²+(y-b)²=r²。在(x-a)²+(y-b)²=r²中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。

圆是一种几何图形。根据定义,通常用圆规来画圆。同圆内圆的直径、半径的长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。同时,圆又是“正无限多边形”,而“无限”只是一个概念。当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是一种概念性的图形。

求曲线方程的五种方法

1、直接法:设曲线上动点坐标为X后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有的关系式。从而得到轨迹方程,这种求轨迹方程的方法称作直接法。

2、代入法(或利用相关点法):即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。

3、几何法:求动点轨迹问题时,动点的几何特征与平面几何中的定理及有关平面几何知识有着直接或间接的联系,且利用平面几何的知识得到包含已知量和动点坐标的等式,化简后就可以得到动点的轨迹方程,这种求轨迹方程的方法称作几何法。

4、参数法:有时很难直接找出动点的横、纵坐标之间关系。如果借助中间量(参数),使之间的关系建立起联系,然后再从所求式子中消去参数,这便可得动点的轨迹方程。

5、待定系数法:由题意可知曲线类型,将方程设成该曲线方程的一般形式,利用题设所给条件求得所需的待定系数,进而求得轨迹方程,这种方法叫做待定系数法。

圆的半径怎么求

圆的一般方程半径为:r=√(D2+E2-4F)/2。利用圆的周长公式求半径,r=C/2π。利用圆的面积公式求半径,r=√(S/π)。

有关圆的计算公式

1、圆的周长C=2πr=πd

2、圆的面积S=πr2;

3、扇形弧长l=nπr/180

4、扇形面积S=nπr2;360=rl/2

5、圆锥侧面积S=πrl

圆的一般方程

圆的标准方程是一个关于x和y的二次方程,将它展开并按x、y的降幂排列,得:

x2+y2-2ax-2by+a2+b2-R2=0

设D=-2a,E=-2b,F=a2+b2-R2;则方程变成:

x2+y2+Dx+Ey+F=0

任意一个圆的方程都可写成上述形式。把它和下述的一般形式的二元二次方程比较,可以看出它有这样的特点:(1)x2项和y2项的系数相等且不为0(在这里为1);(2)没有xy的乘积项。

Ax2+Bxy+Cy2+Dx+Ey+F=0