扫描打开手机站
随时逛,更方便!
当前位置:首页 > 百科 > 知识

勾股定理公式(勾股定理)

时间:2022-03-11 来源:互联网 作者:清俊桑

1、勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理。

2、在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是 a和 b,斜边长度是 c,那么可以用数学语言表达:a的平方加上b的平方等于c的平方。

勾股定理公式

勾股定理,勾股定理是什么

1、在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。

2、勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

3、勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

三角形勾股定理公式,勾股定理的证明有什么意义

1、在直角三角形中,三角型勾股定理公式是a2+b2=c2,设直角三角形的两条直角边长度分别是a和b,斜边长度是c。勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。

2、勾股定理的证明是论证几何的发端,导致了无理数的发现,大大加深了人们对数的理解。同时勾股定理也是历史上第—个给出了完全解答的不定方程,它引出了费马大定理。

勾股定理内容和概念,认识勾股定理

1、定义:在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么可以用数学语言表达:a2+b2=c2。

2、公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。

公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。