向量不是有向线段。向量可用有向线段来表示,每一条有向线段对应着一个向量,但每一个向量对应着无数多条有向线段。向量指具有大小和方向的量。它可以形象化地表示为带箭头的线段。箭头所指代表向量的方向。线段长度代表向量的大小。与向量对应的只有大小,没有方向的量叫做数量。在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的“向量”是哪一种概念。不过,依然可以找出一个向量空间的基来设置坐标系,也可以通过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。
1、叉乘。向量A×向量B=(x1y2i,x2y2j)。向量向量方向符合右手法则。|向量A×向量B|=|向量A||向量B|sin。
2、点乘。设向量A=(x1,y1),向量B=(x2,y2)。向量A·向量B=|向量A||向量B|cosu=x1x2+y1y2(数值u为向量A、向量B之间夹角)。
相反向量是共线向量,已知向量a,如果存在一个向量x,使a+x=0,那么x叫做a的相反向量,记作-a,即a+(-a)=0。由向量加法的定义知道,a与-a等长而且方向相反,a与-a互为相反向量。向量:既有大小又有方向的量叫做向量。如物理学中的位移、力、速度、加速度等物理量都是向量。
1、功不是向量。
2、功是只有大小而没有方向的,所以它不是向量。而角度的话,亦是如此,但是值得注意的是,角速度和角动量都是矢量(向量)。另外,若|向量a|=0,则a=0应该是正确的,注意这里的0不是数字0,而应该是0向量.