连续是极限存在的必要非充分条件,对于连续性,在自然界中有许多现象,如气温的变化,植物的生长等都是连续地变化着的。这种现象在函数关系上的反映,就是函数的连续性。
函数连续的法则:
1、在某点连续的有限个函数经有限次和、差、积、商(分母不为0)运算,结果仍是一个在该点连续的函数。
2、连续单调递增(递减)函数的反函数,也连续单调递增(递减)。
3、连续函数的复合函数是连续的。
连续是偏导数存在的必要不充分条件。偏导数要存在,则函数的左极限等于右极限,左导数等于右导数,也就是说由偏导数存在能够推出函数连续,但是函数连续无法推出偏导数存在。
必要不充分条件,是逻辑学的术语之一,由A不可以推出B,由B可以推出A,则A是B的必要不充分条件。
函数连续的定义:lim(x大于等于a)f(x)等于f(a)是函数连续充要条件。
在这点函数可导是连续的充分条件,不是必要条件,例如绝对值函数f(x)等于x的绝对值在x=0处连续但不可导。
1、连续性定义:若函数fx在x0有定义,且极限与函数值相等,则函数在x0连续。
2、充分条件:若函数fx在x0可导或可微(或者更强的条件),则函数在x0连续。
3、必要条件:若函数fx在x0无定义、或无极限、或极限不等于函数值,则在x0不连续。
4、观察图像。
5、记住一些基本初等函数的性质,大部分初等函数在定义域内都是连续的。
6、连续函数的性质:连续函数的加减乘,复合函数等都是连续的。
1、充分条件。
2、如果A能推出B,那么A就是B的充分条件。其中A为B的子集,即属于A的一定属于B,而属于B的不一定属于A,具体的说若存在元素属于B的不属于A,则A为B的真子集;若属于B的也属于A,则A与B相等。
3、陈述某一事物情况是另一件事物情况的充分条件的假言命题叫做充分条件假言命题。充分条件假言命题的一般形式是:如果p,那么q。符号为:p→q(读作“p蕴涵于q”)。例如“如果物体不受外力作用,那么它将保持静止或匀速直线运动”是一个充分条件假言命题。