1、光芯片主要应用于通信行业,是通信设备系统里不可或缺的一部分。而我们常说的芯片是硅芯片,属于半导体行业,比如CPU、存储、闪存等。
2、光芯片用于完成光电信号的转换,是核心器件,分为有源光芯片和无源光芯片。光芯片包括了激光器、调制器、耦合器、波分复用器、探测器等。在运营商的核心交换网设备、波分复用设备、以及即将普及的5G设备中有大量的光芯片。
3、在路由器、基站、传输系统、接入网等光网络核心建设中,光器件成本占比高达60%以上。光模块是5G最重要的一部分,要想在5G时代获得超额利润,就必须在上游芯片和核心器件布局和延伸。
1、光子芯片和量子芯片是两个维度的概念,没有强弱之分。光子芯片运用的是半导体发光技术,产生持续的激光束,驱动其他的硅光子器件;量子芯片就是将量子线路集成在基片上,进而承载量子信息处理的功能。
2、光子芯片可以将磷化铟的发光属性和硅的光路由能力整合到单一混合芯片中,当给磷化铟施加电压的时候,光进入硅片的波导,产生持续的激光束,这种激光束可驱动其他的硅光子器件。这种基于硅片的激光技术可使光子学更广泛地应用于计算机中,因为采用大规模硅基制造技术能够大幅度降低成本。
3、量子芯片的出现得益于量子计算机的发展。要想实现商品化和产业升级,量子计算机需要走集成化的道路。超导系统、半导体量子点系统、微纳光子学系统、甚至是原子和离子系统,都想走芯片化的道路。从发展看,超导量子芯片系统从技术上走在了其它物理系统的前面;传统的半导体量子点系统也是人们努力探索的目标,因为毕竟传统的半导体工业发展已经很成熟,如半导体量子芯片在退相干时间和操控精度上一旦突破容错量子计算的阈值,有望集成传统半导体工业的现有成果,大大节省开发成本。