分布列一般用于离散的随机变量的分布描述。基本上是可以列表出来的来,也就是说有限少数的概率分布。比如说A,B,C表示所有可能发生的三个源不同的事件,它们有个分布列。
分布律的话,连续的变量分布描述;或者是比较复杂的离散随机变量。比如说正态分布、二项式分布、泊松分布等等,一般叫做分布律。
对一个离散型随机变量X,其取问值为k的概率为pk。分布律反映了一个离散型随机变量的概率分布的全貌。表示概率在所有的可能发生的情况中的分布。
1、分布律的表示:对一个离散型随机变量X,其取值为k的概率为pk。连续的变量分布描述;或者是比较复杂的离散随机变量。比如说正态分布、二项式分布、泊松分布等等,一般叫做分布律。
2、概率,亦称“或然率”,它是反映随机事件出现的可能性(likelihood)大小。随机事件是指在相同条件下,可能出现也可能不出现的事件。
1、求分布列P=(=1,2,3,4,5),分布列表示概率在所有的可能发生的情况中的分布,概率亦称“或然率”,它是反映随机事件出现的可能性大小。随机事件是指在相同条件下,可能出现也可能不出现的事件。
2、例如,从一批有正品和次品的商品中,随意抽取一件,“抽得的是正品”就是一个随机事件。设对某一随机现象进行了n次试验与观察,其中A事件出现了m次,即其出现的频率为m/n。经过大量反复试验,常有m/n越来越接近于某个确定的常数(此论断证明详见伯努利大数定律)。该常数即为事件A出现的概率,常用P(A)表示。
1、已知分布列求分布函数是F(x)=P(X≤x),分布函数是概率统计中重要的函数,正是通过它,可用数学分析的方法来研究随机变量。分布函数是随机变量最重要的概率特征,分布函数可以完整地描述随机变量的统计规律,并且决定随机变量的一切其他概率特征。
2、离散型随机变量的分布律和它的分布函数是相互唯一决定的。它们皆可以用来描述离散型随机变量的统计规律性,但分布律比分布函数更直观简明,处理更方便。因此,一般是用分布律而不是分布函数来描述离散型随机变量。